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THE UNIFORM APPROXIMATION PROPERTY 
IN ORLICZ SPACES 

BY 

J. LINDENSTRAUSS t and L. TZAFRIRI  

ABSTRACT 

It is proved that for every reflexive Orlicz space X there is a function n(k,  e)  so 
that whenever E is a k-dimensional subspace of X there exists an operator 

T: X--~ X such that T I ~ = identity, IIT IJ --< 1 + e and dim T X  <- n (k, e). Some 
general facts concerning the uniform approximation property are also pre- 

sented. 

Introduction 

The bounded approximation property (b.a.p.) is, as well known, shared by the 

common separable Banach spaces and in particular by all the spaces having a 

Schauder basis. It is usually quite easy to verify that a given concrete space has 

this property even without using a basis. The property which corresponds to the 

b.a.p, in the local theory of Banach space is called the uniform approximation 

property (u.a.p.). This property was introduced by A. Pelczynski and H. P. 

Rosenthal [11]. 

DEFINITION. A Banach  space X is said to have the uniform approximation 

property if  there is a A > 1 and a funct ion n ( k  ) so that whenever  E is a 

k -d imens iona l  subspace of  X there is an operator T : E - * E f o r w h i c h  Tx = x;  

x ~ E (i.e. Tl~ = identity), II Tll <- A and dim T X  < - n ( k ) .  

When the particular values of A or n (k) are of importance we shall say that X 

has the )t-u.a.p. or even the (,L n(k))-u.a.p. If the T in the definition can be 

chosen so that it is also a projection we shall say that X has the uniform 

projection property. 
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To check whether a given concrete Banach space has the u.a.p, seems to be 

much harder than checking the b.a.p. In [11] it was shown that all the Lp spaces 

have the u.a.p. (even the uniform projection property). The first step of the proof 

of this assertion gives some information for general Banach lattices, but the 

second part of this proof (which is trivial in the setting of Lp) uses a property 

which actually characterizes the Lp-spaces and thus works only in this setting. 

The verification of the validity of u.a.p, in other concrete lattices seems to 
require a much more detailed analysis. Just finding e.g. a Schauder basis in the 
space is not enough. It was observed by W. B. Johnson (cf. [11]) that the 
existence of a space which fails to have the b.a.p, implies easily the existence of a 
space with a Schauder basis which fails to have u.a.p. Recently, A. Szankowski 
[13] proved that the existence of an unconditional or even a symmetric basis does 

not ensure the u.a.p. 

Before continuing let us make a brief comment concerning the interest in 

studying the u.a.p. We have already mentioned that it seems to us to be the 

natural approximation property in the local theory of Banach spaces. The u.a.p. 

is certainly of interest in connection with other properties studied in Banach 

space theory; in particular, of course, the various global approximation proper- 

ties. For example, it follows from Theokem 3 below, that in order to verify that 

X** has the b.a.p, it is enough to verify that X has the u.a.p. This may be a 

useful remark in cases where X is a "relatively small" space while X** is a large 

non-separable space. It is also quite likely that the u.a.p, will play a role in 

approximation theory. The approximation property originated from the study of 

the question whether every compact operator S: X ~ Y is the limit in operator 

norm of finite rank operators. The u.a.p, comes into play if we ask questions of 

the following type: Given S as above and e > 0, for which integer k does there 

exist a T: X--~ Y with dim T X  <= k and 1] T - S U -< e ? (The answer depends on 

the parameters appearing in the u.a.p, for X or Y and on the degree of 

compactness of S, i.e. on the metric entropy of the image under S of the unit ball 

of X.) 

In Section 2 below we prove some general results concerning the u.a.p. 

Theorem 1 states that if X has the A-u.a.p. for some A > 1 and if X is 

superreflexive then X has the A-u.a.p. for every A > 1. This theorem can be 

viewed as a local version of a result of Grothendieck [3] stating that reflexive 

spaces with the approximation property have already the metric approximation 

property. The proof is however entirely different. From Theorem 1 it follows 

easily that a superreflexive space X has the u.a.p, iff X* has this property 

(Theorem 2 below). We do not know whether Theorems 1 and 2 remain valid 
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without the assumption of superreflexivity. Without this assumption we have 

only the following result (Theorem 3 below): A Banach space X has the u.a.p. (if 

and) only if X** has this property. (The "if"  part is of course trivial.) This result 

emphasizes again the local nature of the u.a.p, and also exhibits an interesting 

difference between this property and the b.a.p. 

In Section 3 we pass from general spaces to Orlicz spaces (in our context it 

makes no difference if we consider Orlicz sequence or function spaces). Our 

main result (Theorem 4) shows that the reflexive Orlicz spaces have the u.a.p. 

We give an explicit construction of the operators T (as a matter of fact 

projections) which appear in the definition of the u.a.p. The explicit construction 

does not, however, give operators of norm arbitrarily close to 1. We get a bound 

)t depending on the space (or more precisely on the A2 constants of the given 

Orlicz function and its conjugate). In order to get operators of norm arbitrarily 

close to 1 we have to apply Theorem 1. 

2. General results 

THEOREM 1. A superreflexive space Y which has the u.a.p, has the (1 + e)- 

u.a.p, for every e > O. 

PROOF. A superreflexive space can be renormed to be uniformly convex (cf. 

[4], [1]; for our purposes here we could just as well take this as the definition of 

superreflexivity). Moreover the uniformly convex norm can be taken to be 

arbitrarily close to the given norm. Indeed if II II and Ill Ill are equivalent norms 

with II1" Ill uniformly convex then for every ct >0 ,  I1"11+~ III III is also 

uniformly convex and close to I1" II for small a. In view of this remark there is no 

loss of generality to assume that Y is already uniformly convex with modulus of 

convexity ~(z). 

Let Ao be the infimum of all the A for which Y has the )t-u.a.p.; we have to 

show that A0 = 1. Assume that )to > 1, put To = ()t0-- 1)/2()to + 1) and let 7/ > 0 be 

such that 

~ ( r o ) > - - - - ~  ~ and ) to -3~7-1  
) to+~ +1 >r 

By the choice of )to, Y has the (/Zo, n(k,/.to))-u.a.p, with /to = Ao+ ~ and a 

suitable function n(k, tzo). Let E be a k-dimensional subspace of Y and let 

T: Y---* Y satisfy H T ll --</~o, Tts = identity and dim T Y  <= n(k, tto). 

Set 

K = {y; y ~ Y, 11 y rl = 1, rl Ty I] =>/Zo0 - 8(%)/2)}. 
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Since TK is contained in a ball of radius tZo in an n(k, tZo)-dimensional space we 

can find a number m = m (k,/~o), independent of the particular choice of E, and 

m balls {B~}?=I of radius /~o~(Zo)/4 so that T K C  U ?~B~. Notice that K C 

U ,"=1K~ where K, = K n T-~B~. Assume now that there are y',  y " E  K~ so that 

II y '  - y"  II -> To. Then 

1 - II y'  + y" 11/2 ---- a (To) 
and, consequently, 

/Zo(1- ~ 2 - - ~ ) =  < II TY'[I =< I1Ty'+ Ty"]]/2 + II T y ' -  Ty"][/2 

=</Zo(1- 6(Zo))+ tXo6('ro)/4 =/Xo ( 1 -  3~51z~ ) . 

This contradiction shows that in every non-void set K, we can select an element 

y, so that II y - y, II < To for every y E K,. Since the subspace F = span {E, {y, }?=l} 

is at most k + m (k,/zo)-dimensional we can find an operator S: Y ~  Y such 
that S~ = identity, Iis II -< ~,, and d imSY = n (k + m,/zo). Consider now the 
operator "s (S + T)/2. Evidently, ~E =ident i ty  and dim TY-< v ( k ) =  

n(k, tzo)+ n(k + m, tzo). To compute the norm of f" we shall let yoE Y, II yoll = 1 
and distinguish between two cases. In the first we assume yo E K. Then yo E K~ 

for some i which implies II y o -  y, I1 < To. Thus, tl Syo II =< [I S (yo - y,)ll + II y, II = 

~oro + 1. In view of the choice of r/ we have 

II Tyoll--< (11Syoll + II Tyoll)/2 -< 0Zo+ 1) (~'o + 1)/2 

_-< (Ao + r /+  1) (To + 1)/2 -< Ao - 77. 

In the second case, since yoE K, we have II Tyo[[ </Xo(1- ~(ro)/2). Thus, 

II Tyo[[--< (tXo+/Xo(1 - ~ (~o)/2))/2 =/Xo(1 - 8 (Zo)/4) 

= (Ao+ rl)(1 - a(~'o)/4) = < Ao- r/. 

Hence IITII-<-Ao-7/ which means that Y has the (Ao-n,v(k))-u .a .p .  This 

contradicts the minimality of Xo and thus concludes the proof. 

THEOREM 2. A superreflexive space Y has the u.a.p, iff Y* has the same 
property. 

PROOF. By Theorem 1 we may assume that Y is uniformly convex and has 

the (1 + e, n(k, e)) u.a.p, for every e >0 .  

Fix e > 0 and an integer k. Let F C Y* be a subspace of dimension k. There is 

an m = m (k, e) and a subspace G C Y with dim G = m such that 
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(*) (1 -e ) l l y* l l<sup ly*(y ) [ ;  y * ~ F .  
yEG 

HylI=I 

Let T: Y---~ Y with Tla =identi ty,  II TII---1+ ~ and dim T Y =  n(m,e). Then 

T ' y *  (y) = y*(y) for every y E G. Hence by (*), 

[[T*y* + Y*ll>-_2-2e 

for every y* E F with II y*ll = 1. Since also II T ' y *  ]] =< 1 + e an easy calculation 

shows that ]] T*y * - y* ]] =< 6-~(4e ) + 2e where 6 is the modulus of convexity of 

Y*. By a standard perturbation argument we deduce that Y* has the u.a.p. 

REMARK. By using the proof of Theorem 1 and the argument in paper [2] the 

following can be proved. Let Y be a Banach space such that every equivalent 

norm in X has the 2-u.a.p. Then Y* has the u.a.p. This shows the connection 

between the results of Theorem 1 and 2 even for non-superreflexive spaces. We 

do not know, however, whether either of the theorems is valid without the 

superreflexivity assumptions. 

A result which can be proved without it is the following. 

THEOREM 3. A Banach space Y has the u.a.p, if and only if Y** has the 
u.a.p. 

The "if"  part of the theorem follows directly from the local reflexivity 

principle. The "only if" part is a consequence of the following two propositions. 

PROPOSITION 1. Let Y be a Banach space having the u.a.p., C a set of indices 

and U a free ultrafilter over (7. Then the ultrapower y c / U  has also the u.a.p. 

PROOF. Assume that Y has the (A,n(k))-u.a.p. and let y~ 

1 --< i =< k be a system of k vectors in y c / u .  Then, for every fixed c ~ C, there 

exists an operator To: Y---~ Y such that Tcy~ ~  y~'); 1 =< i =< k ; II Tc II--- ;L, and 

dim T~Y <= n(k). We shall define an operator T: y c / u ~  y c / u  as follows: for 

x = (xc)~Ec; we set T(xc)c~c = (Tcx~),Ec. Obviously T is a linear operator 

satisfying II TII --<x and Ty <')= y<'); 1 =<i< k. To estimate the rank of T we 

choose, for every c ~ C, a system of n(k) unit vectors z~; 1 <= i <= n(k) such that 

II a "'z'j '  II --- maxlz, ~.,k)[ a ('~1 and Tr Y C_ span {z ~,,}~__t]) (such a system is called 

an Auerbach basis). Then, for any x = (x,),~c we have 

n(k) 

Tcxc= ~ a~')z~ ̀) 



Vol. 23, 1976 UNIFORM APPROXIMATION PROPERTY 147 

for some scalars a~ ~ satisfying [ a~i'[_- < A I1 x II. Consequently, 

.(k) 
("'k/~ 1) O, zO)'~ = ~ a'i)(z~i),,~c 

T~= a~ ~ ] ~ c  i=l 

where a ~ = limuat,~ 1 <- i <= n(k) .  It follows that 

T ( y c / u )C s pan{ ( z~  1 <= i <= n(k)} i.e. dim T ( y c / u ) < =  n(k ) .  

PROPOSITION 2. For every Banach space Y there exists an ultrapower y c / u  

and a norm one projection P in y c / U  whose range is isometric to Y**. 

PROOF. Let C be the set of all tuples (F, G, e) where F is a finite dimensional 

subspace of Y**, G a finite dimensional subspace of Y* and e > 0. The set C is 

endowed with the order (F1, G1, e l )  < (F2, G2, e2)iff F1 CF2, G1 C G2 and e~ > e2 
becomes a directed set. 

Let U be a free ultrafilter on 'C which is consistent with this order on C. By the 

local reflexivity principle, for any such triplet c = (F, G, e)  E C, there exists an 
into 

operator Sc:F , Y  such that S~t~nv=identity, Ilscll 'llss'll<l§ and 

y*(Scy**) = y**y* for every y** E F and every y* E G .  For y** E Y** we can 
now set 

~ ,y**=  f Soy** if y * * E F  

[ 0 otherwise. 

Then it can be easily verified that Sy** = (S~y**)~c defines an isometry S from 
Y** into y c / U .  

We can also define an operator T from y c / u  into Y** by setting 

(T(yc)c~c)(y*) = lim y*yc; y* ~ Y*; (y,),~c E y c / u .  
U 

For Co = (Fo, Go, eo) and y** E Fo, y* E Go we have 

(TSy**) (y*) = lim y 'Soy** = lim y'Soy** = y**y* 
U U 

which shows that TS = identity on Y**. If we also notice that [[ T[[_- < 1 then 

P = ST  is the desired projection. 

Proposition 2 and its proof are due to J. Stern [12]. 

We conclude this section by stating the following Corollary of Theorem 3. 
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COROLLARY. Let Y have the u.a.p. Then all the conjugates of Y have the 

approximation property. 

PROOF. Use Theorem 3 and a result of Grothendieck [3] which states that if 

for some Banach space X the dual X* has the approximation property then the 

same is true for X. 

3. Orlicz spaces 

Before we pass to the study of the u.a.p, in Orlicz spaces we recall a result 

concerning the u.a.p, in general Banach lattices (or equivalently in spaces with 

an unconditional basis). This result shows that in studying the u.a.p, in lattices it 

is enough to consider finite dimensional subspaces E of lattices L spanned by 

disjointly supported elements. In the setting of Lp spaces this was proved in [11]; 

however, the same argument works in the general setting (this was pointed out to 

us by W. B. Johnson). 

PROPOSITION 3. There exists a function N(k, e)(N(k,  e) = [2k2/e] k) such that 

for any fixed e > O, every Banach lattice L and every k-dimensional subspace F of 

L there are N =  N(k, e) disjoint elements {gj}~=l in L and a linear operator 
into 

V : F  ~ G = span{g,}~, so that IIvf-fll<-_ellfl[ for all f ~ F .  

PROOF. Let d i m F =  k and let {~}~=1 be an Auerbach basis in F (i.e. 

II~,~=,a,~ II_->maxla, [ f o r  all choices of {a~}~=l). Set fo=E~_ll~ [/k where [.[ 

denotes the absolute value in L i.e. [fl = f v ( -  f). Let Z be the sublattice of all 

f ~ L for which there exists some t > 0  so that I f l  < tfo. Then Ill f Ill = 

inf{t > 0,1fl  < tfo} is a norm in z and Z endowed with this norm is an abstract 

M-space with a unit (namely/Co). 

Let f = E~=, a,~ be an element of norm 1 in F. Then I f l =< E, [ a, [ I~ I ~ kfo and 

hence III f III -<- k. The unit ball in F is thus contained in a ball of radius k in 

(Z, III III ). The proof of Proposition 3 in the case of L| (cf. [11]), which by 

Kakutani 's theorem applies also in (Z, III III ), shows that there are N = [2k2/e] ~ 
into 

elements {gj}~l in Z and an operator V : F  > G =span{gj} such that 

III v f -  f III < ~ for every f E F with III f III -<- k. Hence [ Vf - f l < efo and thus 

also II v f -  f II --- e for every f E F with [[ f II = 1. This corhpletes the proof. 

REMARKS. 1. The argument we presented here is an obvious modification of 

an argument due to Kwapien (and presented in [11]) who showed how to reduce 

the proof of the proposition in the case L = L~(0, 1) to the simplest case i.e. 
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p = oo. 2. Since in an Lp-space the span of disjointly supported elements is the 

range of a contractive projection Proposition 3 shows that the Lp spaces have the 

uniform projection property. This argument works only for Lp-space. 

We pass now to Orlicz spaces. We shall work in the.setting of reflexive Orlicz 

sequence spaces lu. The proof  that these spaces have the u.a.p, is based on the 

existence of a large supply of disjoint blocks whose spans are complemented in 

the space. We want first to explain this point in order  to clarify the computa- 

tions done below. Assume that we are given blocks g~ = X , ~ j t ,  e, where the tr~ 

are disjoint finite subsets of the integers and {e,}7=. denotes the canonical unit 

vector  basis in IM. Assume that for  each j there is a function Nj(x) so that 

N j ( x )  = M ( t s x ) / M ( t , )  for  all s E crj and every x E [0, 1]. Then the span of the 

{g~} is the range of a contractive projection from IM. The projection is a 

weighted averaging projection and is given by 

Pf  = ~flj ( i ~  x ,M (t,/Jig, ll)/ti) g, �9 

We omit the easy verification that P is a contractive projection; this will enter 

into the proof presented below. For a reflexive Orlicz space the set E~.I = 

{M(tx)/M(t)}o<,<~ is a compact subset of C(0, 1). Hence, given any finite number 

of disjoint blocks in IM and an e > 0 we can subdivide the blocks into a finite 

number of smaller blocks such that in each of the small blocks say r/ the 

functions {M(t~x)/M(t,)},~, ,  while not identical, form a set of diameter = e in 

C(0, 1). Under  certain assumptions the projection P (more precisely a variant of 

it) defined above (corresponding to the small blocks) will still work. Into the 

evaluation of the norm of P enters in a crucial way the number of points in a 

e-net  of the compact set Eta.,. It turns out that we can ensure that IIP II --<~ where 

A is a constant depending only on the space. The technical part of the 

computation is somewhat simplified if we use a representation of Orlicz 

functions by sequences of O's and l 's  (introduced in [8]). We recall briefly this 

representation. 

Let lM be a reflexive Orlicz sequence space. Because of the reflexivity we can 

assume with no loss of generality that for some 1 < p < r and all 0 < x =< 1 we 

have p <= x M ' ( x ) / M ( x )  <= r. Let a be the (unique) number satisfying ap - p + 

1 = a ' .  Then the functions F ( x )  = x p and G ( x )  = px - p + 1 have on the interval 

[a, 1] the following properties: 

F(1) = G(1) = 1; F(c~) = od'; G ( a )  = a '  

x F ' ( x ) / F ( x )  >-_- F'(1) = p = G'(1) _-< x G ' ( x ) / G ( x ) ;  a <-_ x <= 1. 
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Under  these conditions (cf. [6]), for any sequence 0 = {0(i)}7=,, where O(i) is 

either 0 or 1, we can define an Orlicz function Me on [0, 1] by setting: 

MoO) = 0; MoO) = 1 

Mo(x)=IMo(a'- ')F(x/a'- ' )  if 0(i)=011 a'<=x<a '-' 
(M6(a'- ')G(x/a '-1) if O ( i )  i = 1 , 2 , . . . .  

It can be easily checked that p <= xM~x)/Mo(x)<= r ; 0 <  x =< 1. 

In order  to get a function Me which is equivalent to M we shall define the 

sequence {0(i)}7=1 in the following inductive way: we put 0 (1 )=  1 and if 

Me(a')a p =<M(a  '+1) then we set O(i + 1 ) = 0 ;  otherwise we take O(i + 1)=  1. 

Since a" <= M(ax)/M(x) < a p ; 0 < x =< 1 we can verify that Me ( a ' )  =< M(a') =< 

aP-'Mo(a'); i = 1 , 2 , - . -  i.e. Me is equivalent 'to M. 

An important  remark about this construction is that a can be chosen to be as 

small as desired by fixing r and taking p sufficiently close to 1. 

THEOREM 4. Every reflexive Orlicz sequence space has the 1 + e - u.a.p., for 
all e > 0 .  

PROOF. Since reflexive Orlicz spaces are uniformly convex (cf. [9], [10]), in 

view of Theorem 1 it suffices to show that the space has the A-u.a.p. for some 

A > I .  

Let then IM be a reflexive Orlicz sequence space. As explained above we can 

find numbers  1 < p < r, 0 < a < 1 and a sequence 0 = {O(i)}Tz~, with O(i) being 

equal to 0 or 1, so that the Orlicz function Me, defined above, is equivalent to M. 

We have also noticed that by changing p we can choose a as small as desired. 

We shall assume that a < 4-'. 

For simplicity we shall write M instead of Me. It is also clear that we still have 

p <-xM'(x)/M(x)<=r; 0 < x  -<1. 

Now let E be a k-dimensional  subspace of IM and fix e > 0. By Proposition 3 

we can find N = N(k, e) normalized disjoint blocks/ ,  = Ei~,t~e~ ; t ~  0 for i ~ ~ ;  

j = 1, 2 , . . . ,  N so that F = span{~}~=l contains E up to e (here, as usual, {e,} 

denotes the unit vector basis of lu). A simple perturbation argument  shows that 

it suffices to prove the u.a.p, for F. 

Since 2"a"  < 2 "  �9 4-" - - - ,0  as n - - - ~  we can choose an integer Q = Q(N) so 

that 

N2"+12"~ a ~ <= 1. 

Notice that there are at most 2 ~ distinct sequences among those having the form 

{O(m + 1), O(m - t -2) , - . . ,  O(m + Q)}; m = 0, 1 , 2 , . . . .  Thus it is always possible 
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to find 2 ~ integers m~,m2," �9 ", mzo so that for every m there is a 1 =< v _-< 2 ~ for 

which O(m + i) = O(m~ + i); i = 1 , 2 , . - . ,  Q. 

It is easy to see that, in the same way in which M = Me corresponds to 

{0(i)}~=~, the function M ( a m x ) / M ( a  m) corresponds to the sequence {O(i + 

m)}7=~. Hence, by the definition of M0 we have 

and, therefore, 

~ _-< x _-< 1 M ( a ' )  M ( a  m) , 

[ M ( a " x ) _ M ( a ' ~ x ) l  < o < 
M(t~m) M ( c m )  = a  ; 0_--<x=l .  

In the next step we shall split the set (rj;j = 1, 2 , . . . ,  N into disjoint subsets as 

follows. First, we shall denote by ~j the set of all i E o-j for which I t, [>  N-Z2-~ 

then we shall split o, s - ~j, i.e. those indices i E (r i for which t~ is relatively small, 

into disjoint subsets o'n, trj2,. . . ,  trjhj so that hj is maximal, 

N-22 -~  =< ~ j ,  t~e~ < N-22 -~247 

and there exists an index v = v(j, h), common to all i E o'~h in the sense that 

whenever m (i) satisfies a"~ < I t, I N22~ =< a ' ( n  then 

M ( a m ( " x ) - M ( a m ' x )  < a  ~  0 < x - - < l .  
M(ct "(~ .M(am~) = , = 

Notice that in general trio= ( ~ -  8s ) -  U h~=l trjh~ O but 

~ tie, < 2  ~  - ~  ] = 1 , 2 , - . - , N  
i o 

since for each possible v; 1 _-< vo~< 2 ~ the norm of that portion of 2~,~_~t,e~ which 

has not been accounted for in any of the sets (rib; h - - 1 , 2 , . . . ,  hj and which 

"corresponds"  to v is not greater than N-22 -~ From now on we assume as we 

clearly may that t~ _-> 0 for all i. 

We are now prepared to define a finite rank operator  T: lM--* IM SO that 

T/j - -~ ; j  = 1, 2 , . . . ,  N. We first choose a functional f* E l*  which is supported 

by the same indices as fj and which satisfies I [ f* l l= l  and f * ~ ) = l ; j =  

1, 2 , - - - ,  N. Then, for every x = ~=1 xse, we set 
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Tx = ,=~ t~sj ( ~'~ x,e, + [~ ( ~  x~e~) ,~,o ~ tie, 

hi Xs  

Obviously, T is well defined, linear and T~ = ~; j = 1, 2 , . . . ,  N since 

s~o'jh u h 

To estimate the dimension of the range of T we need the fact that for any 

sequence of disjoint blocks {us} in IM we have IIr,,u, II- (Y~J II u, I1')'"-Using this 

inequality (which follows easily from xM'(x)/M(x)<=r; 0 < x = < l  and the 

correspondence between blocks in l~ and Orlicz functions in CM.~ = 
conv{M(tx)/M(t); 0 < t <= 1}; for more details see [6]) we get that 8j contains at 

most N 2" -2 (~247 elements. Similarly, it follows that hj =<N 2' .2 ~ Thus, 

dim Tl~ <= N[N 2" �9 2(~ 1 + N 2' �9 2 ~ =< N 2'§ 22(~247 where N = N(k, e) and 

O = Q(N). 
To estimate the norm of T we assume that xj => 0 and II x II--< 1 i.e. ~7~ M(x~) <= 

1. We first notice that 

II,=~ [* ( ~  x,e,) ,~ot, e, <-- N" N-2 = N -~. 

Now fix j and h. Then, by the convexity of M and the fact that M(3,x)/M(x) <= "r" 
for any 3~ > 1 and 0 <  x = 1, we have: 

a,h = ~ M(t, ~, M ( t J I  I ~ t,e, )~ )  
iEo'jh \ SE"jh \ / II v~~ I I /  

~ 2"-' ~,hM(t, ~' M(t~/ ] 

( +2'-~ ~ M t, h 
iEtrih 

~ j  t~e~ )~)  

~t~ev ~) 

where X' contains all the indices s for which ts/llX~,~tve~ll<=x, and X" the 

others. By the convexity of M it follows that M(x)/x is an increasing function. 

Hence,  

M t~ M t, t~ev <= M t~ M x, t~e v 
i~o'ih \ s \ I II vEo'jh I I /  s ~  i ~ r j h  \ s I II ve~o'lh / 

<= ~ ~, 'M(x,)M(, , /I  ~'. t,e, )= ~'M(x.) .  
iEO'jh $ uEOjh  I S 
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On the other hand, again by convexity of M, we have 

i E o'jh 

--< ,o.,.~ ~:" ~ ( " / I I ,  . &"e'l)Mc"x'/"'" 

Furthermore, for v = v(/', h), i E trjh and s corresponding to Z" we have 

M(-,,, I ~ I /4  <= ~ x ~ t~e ~ 
\ II v~o ' ih  II / / 

<(2/a )'M(t,/I1 .~,tve. [) [2a ~ + M(a ""'x.lt %, .e . I I / , . ) /M (~-,.,)] 

_<(2,a )'M(t,/ ~.~ ,~e. I)[=o~ + .=,o..~.x..,,(r & t.e. )] .  

Thus, 

aih~2"-' ~ ' M  (x~)+ 2'-' ~ ~"M(t./HI ~, t~e"ll) 
s i E t r j h  s u h 

~., o~ ~(r ,.e. It 

" ( / 11~  II3 ~ + T - t E E M  t, t ,e .  
iEo- jh  ~ \ / II v e c %  I | /  

�9 ,~ -~ 'M(x . )M( t , / I tEt .e .  I/~(,./I1.~. t.e. [) 
~ 3 r - - I  - - 2 r ~ ' ~ t t  i f  Y x \ <=2"-~z/M~x,j+22".a~ +z a ~ 1v1~ ,) 

s s 

<_2,,-,.a-2, ~, M(x,)+22"a o-'. 
s E zrt~ 

153 
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It follows f rom this that 

s M(x , )+  s A,h ----<2"-~'a - 2 ' ~  M(x,)  
j = l  s~Sj h = l  s = l  

N 

+22' " a ~  E h,<=2~'-~'4-2"~ M(x~) 
j = l  s = l  

+ 22' �9 4 ~  N 2~ �9 2 ~ =< 2 3'-1 4 -2,  + 22"a -" <= 23"a -2, 

Thus II T II N- '  + 2 4-=' < and this completes the proof. 

REMARKS. 1. The bounds for the norm of T and for dim TlM are the same for 

all the Orlicz functions M for which 1 < p <-xM'(x)/M(x)<= r; 0 <  x _-< 1 with 

the same p and r. This is equivalent to the fact that reflexive Orlicz spaces IM 

have the u.a.p, with constants depending only on the A2-constants of M and its 

dual functions M*. 2. The opera tor  T defined above acts as a projection on 

span {ei ; i ~ I,.J ~=1 trio}. Since the norm of T restricted to span {ei ; i E I,.J ~=~ trio } 

is less than N -1 we can apply a simple perturbat ion argument  and replace T by a 

projection P in l~ so that P ~ = ~ ; j = I , 2 , . . . , N ;  ffPIl=(2/4)"+l, and 

dim Plu = dim TIM. This means that reflexive Orlicz sequence space have even 

the uniform projection property.  3. Reflexive modular  sequence spaces can 

always be embedded  as complemented  subspaces of reflexive Orlicz sequence 

spaces (this follows from the construction of universal Orlicz functions presented 

in [7]). Hence,  they also have the 1 + e - u . a . p .  for all e > 0. 

COROLLARY. Every reflexive Orlicz function space LM, on either a finite or 
infinite interval, has the 1 + e - u.a.p, for all e > O. 

PROOF. Since the u.a.p, is a local proper ty  we have to consider only the case 

of Orlicz spaces LM(a,b) where (a,b) is a finite interval. Let E be an 

h-dimensional  subspace of LM(a, b). Then,  for any e > 0 we can find a number  c 

and an opera tor  V : E  in'~ {Xta+(i-l) . . . .  jc]} so that II V e -  

e II < ~; e E E. Evidently, c can and should be chosen in such a manner  that q is 

an integer. The number  q can be very large and certainly depends on E. 

However ,  H is actually isometric to the Orlicz sequence space l q where 

N(x)  = M(dx) /M(d)  and d is defined by cM(d)= 1. 

Since H has the u.a.p, with constants depending only on M and since H is the 

range of a contractive projection in LM it follows immediately that LM also has 

the u.a.p, and therefore the 1 + e - u . a . p .  for all e > 0. 
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